解答题已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a

浩唐网络 行业资讯 2021-06-18 20:41 6次
网友回答解:(I)设等比数列{an}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20∴∴或∵数列{an}单调递增∴an=2n(II)∵an=2n∴bn==-n?2n∴-sn=1×2+2×22+…+n×2n??? ①∴-2sn=1×22+2×23+…+(n-1)×2n+n2n+1? ②∴①-②得,sn=2+22+23+…+2n-n?2n+1=2n+1-n?2n+1-2解析分析:(I)根据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{bn}的通项公式,然后求出-Sn-(-2Sn),即可求得的前n项和Sn.点评:本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般采取错位相减的办法.